Showing posts with label GLOBAL WARMING. Show all posts
Showing posts with label GLOBAL WARMING. Show all posts

Monday 12 May 2014

Uncontrollable ice-melt? Uncorking East Antarctica could yield unstoppable sea-level rise, simulations show

The melting of a rather small ice volume on East Antarctica's shore could trigger a persistent ice discharge into the ocean, resulting in unstoppable sea-level rise for thousands of years to come. This is shown in a study now published in Nature Climate Change by scientists from the Potsdam Institute for Climate Impact Research (PIK). The findings are based on computer simulations of the Antarctic ice flow using improved data of the ground profile underneath the ice sheet

"East Antarctica's Wilkes Basin is like a bottle on a slant," says lead-author Matthias Mengel, "once uncorked, it empties out." The basin is the largest region of marine ice on rocky ground in East Antarctica. Currently a rim of ice at the coast holds the ice behind in place: like a cork holding back the content of a bottle. While the air over Antarctica remains cold, warming oceans can cause ice loss on the coast. Ice melting could make this relatively small cork disappear -- once lost, this would trigger a long term sea-level rise of 300-400 centimeters. "The full sea-level rise would ultimately be up to 80 times bigger than the initial melting of the ice cork," says co-author Anders Levermann.
"Until recently, only West Antarctica was considered unstable, but now we know that its ten times bigger counterpart in the East might also be at risk," says Levermann, who is head of PIK's research area Global Adaptation Strategies and a lead-author of the sea-level change chapter of the most recent scientific assessment report by the Intergovernmental Panel on Climate Change, IPCC. This report, published in late September, projects Antarctica's total sea level contribution to be up to 16 centimeters within this century. "If half of that ice loss occurred in the ice-cork region, then the discharge would begin. We have probably overestimated the stability of East Antarctica so far," says Levermann.
Emitting greenhouse-gases could start uncontrollable ice-melt
Melting would make the grounding line retreat -- this is where the ice on the continent meets the sea and starts to float. The rocky ground beneath the ice forms a huge inland sloping valley below sea-level. When the grounding line retreats from its current position on a ridge into the valley, the rim of the ice facing the ocean becomes higher than before. More ice is then pushed into the sea, eventually breaking off and melting. And the warmer it gets, the faster this happens.
Complete ice discharge from the affected region in East Antarctica takes five thousand to ten thousand years in the simulations. However, once started, the discharge would slowly but relentlessly continue until the whole basin is empty, even if climate warming stopped. "This is the underlying issue here," says Matthias Mengel. "By emitting more and more greenhouse gases we might trigger responses now that we may not be able to stop in the future." Such extensive sea level rise would change the face of planet Earth -- coastal cities such as Mumbai, Tokyo or New York are likely to be at risk.

East Antarctica is sliding sideways: Ice loss on West Antarctica affecting mantle flow below

Now that West Antarctica is losing weight--that is, billions of tons of ice per year--its softer mantle rock is being nudged westward by the harder mantle beneath East Antarctica.
The discovery comes from researchers led by The Ohio State University, who have recorded GPS measurements that show West Antarctic bedrock is being pushed sideways at rates up to about twelve millimeters--about half an inch--per year. This movement is important for understanding current ice loss on the continent, and predicting future ice loss.
They reported the results on Thursday, Dec. 12 at the American Geophysical Union meeting in San Francisco.
Half an inch doesn't sound like a lot, but it's actually quite dramatic compared to other areas of the planet, explained Terry Wilson, professor of earth sciences at Ohio State. Wilson leads POLENET, an international collaboration that has planted GPS and seismic sensors all over the West Antarctic Ice Sheet.
She and her team weren't surprised to detect the horizontal motion. After all, they've been using GPS to observe vertical motion on the continent since the 1990's.
They were surprised, she said, to find the bedrock moving towards regions of greatest ice loss.
"From computer models, we knew that the bedrock should rebound as the weight of ice on top of it goes away," Wilson said. "But the rock should spread out from the site where the ice used to be. Instead, we see movement toward places where there was the most ice loss."
The seismic sensors explained why. By timing how fast seismic waves pass through Earth under Antarctica, the researchers were able to determine that the mantle regions beneath east and west are very different. West Antarctica contains warmer, softer rock, and East Antarctica has colder, harder rock.
Stephanie Konfal, a research associate with POLENET, pointed out that where the transition is most pronounced, the sideways movement runs perpendicular to the boundary between the two types of mantle.
She likened the mantle interface to a pot of honey.
"If you imagine that you have warm spots and cold spots in the honey, so that some of it is soft and some is hard," Konfal said, "and if you press down on the surface of the honey with a spoon, the honey will move away from the spoon, but the movement won't be uniform. The hard spots will push into the soft spots. And when you take the spoon away, the soft honey won't uniformly flow back up to fill the void, because the hard honey is still pushing on it."
Or, put another way, ice compressed West Antarctica's soft mantle. Some ice has melted away, but the soft mantle isn't filling back in uniformly, because East Antarctica's harder mantle is pushing it sideways. The crust is just along for the ride.
This finding is significant, Konfal said, because we use these crustal motions to understand ice loss.
"We're witnessing expected movements being reversed, so we know we really need computer models that can take lateral changes in mantle properties into account."
Wilson said that such extreme differences in mantle properties are not seen elsewhere on the planet where glacial rebound is occurring.
"We figured Antarctica would be different," she said. "We just didn't know how different."
Ohio State's POLENET academic partners in the United States are Pennsylvania State University, Washington University, New Mexico Tech, Central Washington University, the University of Texas Institute for Geophysics and the University of Memphis. A host of international partners are part of the effort as well. The project is supported by the UNAVCO and IRIS-PASSCAL geodetic and seismic facilities.

Ice-loss moves the Earth 250 miles down

Antarctic iceberg. Scientists have shown for the first time how the mantle below Earth's crust in the Antarctic Peninsula is flowing much faster than expected, probably due to subtle changes in temperature or chemical composition.
An international research team led by Newcastle University, UK, reveal Earth's mantle under Antarctica is at a lower viscosity and moving at such a rapid rate it is changing the shape of the land at a rate that can be recorded by GPS.

At the surface, Antarctica is a motionless and frozen landscape. Yet hundreds of miles down the Earth is moving at a rapid rate, new research has shown.
The study, led by Newcastle University, UK, and published this week in Earth and Planetary Science Letters, explains for the first time why the upward motion of Earth's crust in the Northern Antarctic Peninsula is currently taking place so quickly.
Previous studies have shown Earth is 'rebounding' due to the overlying ice sheet shrinking in response to climate change. This movement of the land was understood to be due to an instantaneous, elastic response followed by a very slow uplift over thousands of years.
But GPS data collected by the international research team, involving experts from Newcastle University, UK; Durham University; DTU, Denmark; University of Tasmania, Australia; Hamilton College, New York; the University of Colorado and the University of Toulouse, France, has revealed that the land in this region is actually rising at a phenomenal rate of 15mm a year -- much greater than can be accounted for by the present-day elastic response alone.
And they have shown for the first time how the mantle below Earth's crust in the Antarctic Peninsula is flowing much faster than expected, probably due to subtle changes in temperature or chemical composition.
This means it can flow more easily and so responds much more quickly to the lightening load hundreds of miles above it, changing the shape of the land.
Lead researcher, PhD student Grace Nield, based in the School of Civil Engineering and Geosciences at Newcastle University, explains: "You would expect this rebound to happen over thousands of years and instead we have been able to measure it in just over a decade. You can almost see it happening which is just incredible.
"Because the mantle is 'runnier' below the Northern Antarctic Peninsula it responds much more quickly to what's happening on the surface. So as the glaciers thin and the load in that localised area reduces, the mantle pushes up the crust.
"At the moment we have only studied the vertical deformation so the next step is to look at horizontal motion caused by the ice unloading to get more of a 3-D picture of how Earth is deforming, and to use other geophysical data to understand the mechanism of the flow."
Since 1995 several ice shelves in the Northern Antarctic Peninsula have collapsed and triggered ice-mass unloading, causing the solid Earth to 'bounce back'.
"Think of it a bit like a stretched piece of elastic," says Nield, whose project is funded by the Natural Environment Research Council (NERC).
"The ice is pressing down on the Earth and as this weight reduces the crust bounces back. But what we found when we compared the ice loss to the uplift was that they didn't tally -- something else had to be happening to be pushing the solid Earth up at such a phenomenal rate.
"Collating data from seven GPS stations situated across the Northern Peninsula, the team found the rebound was so fast that the upper mantle viscosity -- or resistance to flow -- had to be at least ten times lower than previously thought for the region and much lower than the rest of Antarctica.
Professor Peter Clarke, Professor of Geophysical Geodesy at Newcastle University and one of the authors of the paper, adds: "Seeing this sort of deformation of the Earth at such a rate is unprecedented in Antarctica. What is particularly interesting here is that we can actually see the impact that glacier thinning is having on the rocks 250 miles down."